Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(x, 0) → x
+(minus(x), x) → 0
minus(0) → 0
minus(minus(x)) → x
minus(+(x, y)) → +(minus(y), minus(x))
*(x, 1) → x
*(x, 0) → 0
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(x, minus(y)) → minus(*(x, y))
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
+(x, 0) → x
+(minus(x), x) → 0
minus(0) → 0
minus(minus(x)) → x
minus(+(x, y)) → +(minus(y), minus(x))
*(x, 1) → x
*(x, 0) → 0
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(x, minus(y)) → minus(*(x, y))
Q is empty.
We use [23] with the following order to prove termination.
Lexicographic Path Order [19].
Precedence:
*2 > minus1 > +2 > 0